Experiments with Online Reinforcement Learning in Real-Time Strategy Games
نویسندگان
چکیده
Real-Time Strategy (RTS) games provide a challenging platform to implement online reinforcement learning (RL) techniques in a real application. Computer as one player monitors opponents’ (human or other computers) strategies and then updates its own policy using RL methods. In this paper, we firstly examine the suitability of applying the online RL in various computer games. RL application depends much on both RL complexity and the game features. We then propose a multi-layer framework for implementing online RL in an RTS game. The framework significantly reduces RL computational complexity by decomposing the state space in a hierarchical manner. We implement an RTS game Tank General, and perform a thorough test on the proposed framework. We consider three typical profiles of RTS game players and compare two basic RL techniques applied in the game. The results show the effectiveness of our proposed framework and shed light on relevant issues on using online RL in RTS games.
منابع مشابه
Reinforcement Learning In Real-Time Strategy Games
We consider the problem of effective and automated decisionmaking in modern real-time strategy (RTS) games through the use of reinforcement learning techniques. RTS games constitute environments with large, high-dimensional and continuous state and action spaces with temporally-extended actions. To operate under such environments we propose Exlos, a stable, model-based MonteCarlo method. Contra...
متن کاملHierarchical Reinforcement Learning for Real-Time Strategy Games
Real-Time Strategy (RTS) games can be abstracted to resource allocation applicable in many fields and industries. We consider a simplified custom RTS game focused on mid-level combat using reinforcement learning (RL) algorithms. There are a number of contributions to game playing with RL in this paper. First, we combine hierarchical RL with a multi-layer perceptron (MLP) that receives higher-or...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملTransfer Learning in Real-Time Strategy Games Using Hybrid CBR/RL
The goal of transfer learning is to use the knowledge acquired in a set of source tasks to improve performance in a related but previously unseen target task. In this paper, we present a multilayered architecture named CAse-Based Reinforcement Learner (CARL). It uses a novel combination of Case-Based Reasoning (CBR) and Reinforcement Learning (RL) to achieve transfer while playing against the G...
متن کاملHierarchical Reinforcement Learning on the Virtual Battlefield
This paper investigates the potential of flat and hierarchical reinforcement learning (HRL) for solving problems within strategy games. A HRL method, Max-Q, is applied to a unit transportation task modelled within a simplified, discrete real-time strategy game engine, and its performance compared to that of flat Q-learning. It is shown that reinforcement learning approaches, and especially hier...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Artificial Intelligence
دوره 23 شماره
صفحات -
تاریخ انتشار 2009